Abstract

Implants based on titanium alloys, stainless steel and cobalt –chromium have been the primary biomaterials used for load bearing applications and they have been remarkably successful throughout time, but on the long term, there appear a series of inconveniences regarding these metallic implants. Thus, there have been cases of aseptic osteolysis around the implant, with pain and high degree of loosening of the prosthesis which constitutes a limitation of the long term benefits of metallic implants. Therefore, researchers have found new materials for implants, more competitive and efficient. These are materials that are biocompatible and biodegradable. These constitute a novel class of bioactive biomaterials which are expected to support the healing process of a diseased tissue and to degrade thereafter. Magnesium alloys attracted great attention as a new kind of degradable biomaterial. Mg is an essential mineral for human metabolism and its deficiency has been linked to various pathological conditions. The main advantages of Mg alloys are its superior mechanical and biocorrosive properties and its biocompatibility. Mg is a very light-weight metal with a lower density than that of biocompatible Ti alloys, which is closer to that of the human bone. In the present paper we shall focus on presenting some biological testing studies of several Mg alloys from the system Mg-Ca, with different percentages of Ca. Three methods have been use for this: determining the ph at different sample incubation times in culture environment; citotoxicity tests made in vitro which: evaluate the contact toxicity by putting the samples in the buckets of cellular culture plates; evaluate the cellular proliferation at the surface of the tested materials by fluorescence microscopy and deflection microscopy; evaluation of toxicity by testing the effect of the extraction liquid resulting from the incubation of the material with testing cell specific culture environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.