Abstract

Rational use of water is a major challenge for governments and global organizations, with easy and inexpensive interventions being sought by communities that are not supplied with drinking water. In this context, solar disinfection (SODIS) has shown great efficiency for water disinfection. To speed up the process and improve inactivation, we studied the effects of methylene blue (MB) as a photodynamic agent because of its ability to absorb visible light (red wavelength) and generate singlet oxygen as a reactive species, thereby inactivating bacteria and viruses present in water. In this study, samples of clean mineral water were artificially contaminated with Gram-positive (Staphylococcus epidermidis or Deinococcus radiodurans) or with Gram-negative strains (Escherichia coli or Salmonella typhimurium) and exposed to traditional SODIS or to MB-SODIS. A lethal synergistic effect was observed when cultures were illuminated in the presence of MB. The obtained results indicate that bacterial inactivation can be achieved in a much shorter time when using MB associated with SODIS treatment. Therefore, this technique was able to provide safe water for consumption through the inactivation of microorganisms in general, including pathogens and some strains resistant to the traditional SODIS procedure, thus allowing its use in areas usually less exposed to sunlight.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.