Abstract

The current investigation examines the peristaltic flow, in curved conduit, having complaint boundaries for nanofluid. The effects of curvature are taken into account when developing the governing equations for the nano fluid model for curved channels. Nonlinear & coupled differential equations are then simplified by incorporating the long wavelength assumption along with smaller Reynolds number. The homotopy perturbation approach is used to analytically solve the reduced coupled differential equations. The entropy generation can be estimated through examining the contributions of heat and fluid viscosities. The results of velocity, temperature, concentration, entropy number, and stream functions have been plotted graphically in order to discuss the physical attributes of the essential quantities. Increase in fluid velocity within the curved conduit is noticed for higher values of thermophoresis parameter and Brownian motion parameter further entropy generation number is boosted by increasing values of Grashof number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.