Abstract

Objective:Seawater has a potential for managing the intensive potable drinking water demand. The recentconventional desalinating technologies are environmentally unsustainable and energy intensive. Thus, in the quest to find an alternative to the traditional desalination technologies, microbial desalination cells (MDC) have come into limelight. MDCs are considered the promising technologies for treating wastewater while simultaneously producing electricity, which can be utilized for desalinating seawater along with production of some value added products. However, some technical limitations associated with the practical usage of MDCs are pH maintenance at the cathodic side, internal resistance along with membrane fouling and its durability.Methods:These challenges can be dealt by utilizing various integrated configurations.Results and Discussion:Based on the study, the conventional technologies require less operational and maintenance cost but also less environmentally sustainable in comparison to these integrated MDC configurations.Conclusion:This review summarizes the basic working principles of MDCs, its types and factors affecting its performance and also several other applications associated with MDCs. This review also highlights various integrated MDC configurations which can be utilized for reducing the limitations associated to the conventional MDC system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.