Abstract

Microbially influenced corrosion (MIC) is a costly problem that impacts hydrocarbon production and processing equipment, water distribution systems, ships, railcars, and other types of metallic infrastructure. In particular, MIC is known to cause considerable damage to hydrocarbon fuel infrastructure including production, transportation, and storage systems, often times with catastrophic environmental contamination results. As the production and use of alternative fuels such as fuel-grade ethanol (FGE) increase, it is important to consider MIC of engineered materials exposed to these “newer fuels” as they enter existing infrastructure. Reports of suspected MIC in systems handling FGE and water prompted an investigation of the microbial diversity associated with these environments. Small subunit ribosomal RNA gene pyrosequencing surveys indicate that acetic-acid-producing bacteria (Acetobacter spp. and Gluconacetobacter spp.) are prevalent in environments exposed to FGE and water. Other microbes previously implicated in corrosion, such as sulfate-reducing bacteria and methanogens, were also identified. In addition, acetic-acid-producing microbes and sulfate-reducing microbes were cultivated from sampled environments containing FGE and water. Results indicate that complex microbial communities form in these FGE environments and could cause significant MIC-related damage that may be difficult to control. How to better manage these microbial communities will be a defining aspect of improving mitigation of global infrastructure corrosion.

Highlights

  • The detrimental effects of microbial contamination of fuel systems have been well described as microbial activity causes biofouling, fuel degradation, and microbially influenced corrosion (MIC) (Little and Lee 2007; Gaylarde et al 1999; Rajasekar et al 2012; Passman 2013 and references therein)

  • To identify microbes present in tank environments associated with fuel-grade ethanol, we generated small subunit ribosomal RNA (16S rRNA) gene libraries via pyrosequencing technology

  • Reports of suspected MIC issues in environments in which carbon steel and other metal alloys are exposed to fuel-grade ethanol and water prompted the examination of the microbial diversity associated with these environments

Read more

Summary

Introduction

The detrimental effects of microbial contamination of fuel systems have been well described as microbial activity causes biofouling, fuel degradation, and microbially influenced corrosion (MIC) (Little and Lee 2007; Gaylarde et al 1999; Rajasekar et al 2012; Passman 2013 and references therein). It has been estimated that MIC is responsible for a large proportion of corrosion damage of metallic infrastructure and that microbial corrosion leads to billions of dollars of damage just in the USA each year (Little and Lee 2007; Passman 2013 and references therein). While the corrosive impacts of microbes in oil and gas industry infrastructure have been well documented, MIC in ‘alternative’ fuel environments has been less extensively evaluated.

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.