Abstract

There has been a dearth of research elucidating the behavioral effect of microbially-produced volatile organic compounds on insects in postharvest agriculture. Demonstrating attraction to MVOC’s by stored product insects would provide an additional source of unique behaviorally-relevant stimuli to protect postharvest commodities at food facilities. Here, we assessed the behavioral response of a primary (Rhyzopertha dominica) and secondary (Tribolium castaneum) grain pest to bouquets of volatiles produced by whole wheat that were untempered, or tempered to 12%, 15%, or 19% grain moisture and incubated for 9, 18, or 27 days. We hypothesized that MVOC’s may be more important for the secondary feeder because they signal that otherwise unusable, intact grains have become susceptible by weakening of the bran. However, contrary to our expectations, we found that the primary feeder, R. dominica, but not T. castaneum was attracted to MVOC’s in a wind tunnel experiment, and in a release-recapture assay using commercial traps baited with grain treatments. Increasing grain moisture resulted in elevated grain damage detected by near-infrared spectroscopy and resulted in small but significant differences in the blend of volatiles emitted by treatments detected by gas chromatography coupled with mass spectrometry (GC–MS). In sequencing the microbial community on the grain, we found a diversity of fungi, suggesting that an assemblage was responsible for emissions. We conclude that R. dominica is attracted to a broader suite of MVOC’s than T. castaneum, and that our work highlights the importance of understanding insect-microbe interactions in the postharvest agricultural supply chain.

Highlights

  • Olfaction mediates many fundamental biological processes for insects

  • We have demonstrated that the primary pest, R. dominica, is attracted to microbially-produced volatile organic compounds (MVOC’s) found in tempered and incubated grain samples, both in the wind tunnel and in a release-recapture experiment

  • This was counter to our original hypothesis where we thought fungal cues may be more important to the secondary pest, T. castaneum

Read more

Summary

Introduction

Volatile compounds may be used for foraging (Morrison et al 2018a), mate-finding (Xu and Turlings 2018), development (Oi et al 2015), dispersal (Rork and Renner 2018), as well as social group formation and cohesion (Buhl and Rogers 2016). These compounds may originate from a variety of sources, including plant volatiles (Xu and Turlings 2018), microbes (e.g., fungi, bacteria; Davis et al 2013), conspecifics, and heterospecifics.

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call