Abstract

Curcumin (1) is a potent antioxidant and antitumor natural product. In spite of its efficacy and safety, its clinical use is hindered mainly by poor water solubility and bioavailability. Structural modification to introduce hydrophilic functions is a promising approach to resolve this problem. In the present study we first found that curcumin could be efficiently converted into glucosides by filamentous fungi including Rhizopus chinensis IFFI 03043, Absidia coerulea AS 3.3389 and Cunninghamella elegans AS 3.1207. Curcumin 4′-O-β-d-glucoside (2), together with hexahydrocurcumin (3), was isolated from a preparative-scale biotransformation with R. chinensis IFFI 03043 and characterized fully by NMR and MS. A time-course study revealed that curcumin could be efficiently converted into curcumin 4′-O-β-d-glucoside within 8 h when administered at 0.05 mmol L−1 and the productivity was 57%. Additionally, the biotransformation products of curcumin by different fungal strains were analyzed by LC/MS. At least 15 metabolites were detected, and the predominant biotransformation reaction was glucosylation. This study provides a simple, efficient and less expensive approach for the preparation of curcumin glucosides. The introduction of the glucosyl function might be able to enhance the bioavailability of curcumin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call