Abstract

A variety of nitroaromatic compounds, including 2,4,6-trinitrotoluene (TNT), were reduced by hydrogen in the presence of enzyme preparations from Veillonella alkalescens. Consistent with the proposed reduction pathway, R-NO2 H2 leads to R-NO H2 leads to R-NHOH H2 leads to R-NH2, 3 mol of H2 was utilized per mol of nitro group. The rates of reduction of 40 mono-, di-, and trinitroaromatic compounds by V. alkalescens extract were determined. The reactivity of the nitro groups depended on other substituents and on the position of the nitro groups relative to these substituents. In the case of the nitrotoluenes, the para-nitro group was the most readily reduced, the 4-nitro position of 2,4-dinitrotulene being reduced first. The pattern of reduction of TNT (disappearance of TNT and reduction products formed) depended on the type of preparation (cell-free extract, resting cells, or growing culture), on the species, and on the atmosphere (air or H2). The "nitro-reductase" activity of V. alkalescens extracts was associated with protein fractions, one having some ferredoxin-like properties and the other possessing hydrogenase activity. Efforts to eliminate hydrogenase from the reaction have thus far been unsuccessful. The question of whether ferredoxin acts as a nonspecific reductase for nitroaromatic compounds remains unresolved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.