Abstract

The fate of 14C-labeled 2,4,6-trinitrotoluene (TNT) in an activated-sludge system was investigated. No [14C]TNT could be detected in the contents of an aerated reactor after 3 to 5 days of incubation. No significant 14CO2 was formed, and the radioactivity was about equally divided between the floc and the supernatant. The radioactive carbon present in the microflora was mainly associated with the lipid and protein components, but the characteristic constituents of these compounds (e.g., fatty acids and amino acids) were not radioactive. The major part of the 14C present in the lipid and protein fractions was found in precipitates that formed in both fractions. The solubility properties and infrared spectra of these precipitates suggested that they are macromolecular structures of the polyamide type formed by the reaction of TNT biotransformation products with lipids, fatty acids, and protein constituents of the microbial flora. This hypothesis is further supported by the correspondence of the infrared spectrum of the lipid precipitate with that of a model compound synthesized from TNT transformation products and lipid precursors. The resistance of these macromolecules to further biodegradation was paralleled by the reported resistance to microbial attack of polyamides containing similar linkages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.