Abstract

The preparation of novel fluorinated poly(β-hydroxyalkanoates), PHAs, was carried out using Pseudomonas oleovorans (ATCC 29347) and Pseudomonas putida (KT 2442) as biocatalysts. These organisms were first grown on 40 mM sodium citrate prior to studying polymer formation in the second stage using 1:1 molar mixtures of nonanoic acid (NA) and fluorinated acid cosubstrates. The following fluoro acids were synthesized and used in this study: 6,6,6-trifluorohexanoic acid (TFHxA), 6,6,7,7,8,8,8-heptafluorooctanoic acid (HpFOA), 6,6,7,7,8,8,9,9,9-nonafluorononanoic acid (NFNA), and 6,6,7,7,8,8,9,9,10,10,11,11,11-tridecafluoroundecanoic acid (TDFUDA). In general, the use of NA/fluoro acid cosubstrate mixtures instead of only NA in second-stage cultivations resulted in little to no cellular toxicity as measured by values of colony-forming units per milliliter. The mol percent incorporations of fluorinated side chains was determined by 1H and 19F NMR spectroscopies, and peak assignments were made using two-dimensional reverse-detected heteronuclear multiplet quantum correlation (HMQC) as well as 1H−1H correlation spectroscopy (COSY). P. putida formed PHA after a 3-day second-stage cultivation time with 17.3 mol % fluorinated side chains using NA/NFNA as cosubstrates. For shorter second-stage cultivation times (1 day) where product yields were relatively higher, 0.3 g/L of product was formed that contained 6.4 mol % fluoroalkanoate side groups using P. oleovorans as the biocatalyst and NA/HpFOA as cosubstrates. The incorporation of 12.4 mol % fluoroalkanoate repeat units resulted in products which showed melting at higher temperatures (55−80 °C), crystallized at faster rates from the melt, and had higher heats of fusion. Investigation of the surface free energy of products by surface contact angle measurements showed only a modest increase from 87 to 94° for PHAs containing 0 and 17.3 mol % fluorinated side chains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.