Abstract

Common fertilizers present a low use efficiency caused by nutrient losses (e.g., through leaching, volatilization, adsorption, and precipitation in solution as well as through microbial reduction and immobilization) that create a significant limiting factor in crop production. Inoculation with Plant Growth-Promoting Bacteria (PGPB) is presented as an alternative to increasing fertilizer efficiency. The goal of the study was to test the hypothesis that PGPB (solution with Bacillus subtilis, Bacillus amyloliquefaciens, Bacillus licheniformis, and Bacillus pumilus) can be a strategy to increase the monoammonium phosphate (MAP) efficiency, root growth, and nutrient assimilation of soybean and corn cultivated in arenosol and oxisol. A greenhouse study was developed with the rates of PGPB (rates: 0, 1, 1.33, and 1.66–2.0 L per ton of fertilizer) sprayed on MAP and applied in an arenosol and oxisol cultivated with soybean and corn. Results showed that in both soils and crops, there was a variation in soil biological activity during the experiment. On day 45, PGPB + MAP promoted the beta-glucosidase and ammonium-oxidizing microorganism activities in the arenosol. The PGPB + MAP increased crop root growth in both soils and crops. Plant dry matter was associated with the phosphorous content in the soil, indicating that the phosphorous applied was absorbed by the plants, consequently resulting in a higher accumulation in the plant. Based on the results, the conclusion is that PGPB + MAP increases the growth and phosphorous accumulation of soybean and corn cultivated in the arenosol and oxisol, with a direct effect on crop rooting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call