Abstract

BackgroundIt is well understood that distinct communities of bacteria are present at different sites of the body, and that changes in the structure of these communities have strong implications for human health. Yet, challenges remain in understanding the complex interconnections between the bacterial taxa within these microbial communities and how they change during the progression of diseases. Many recent studies attempt to analyze the human microbiome using traditional ecological measures and cataloging differences in bacterial community membership. In this paper, we show how to push metagenomic analyses beyond mundane questions related to the bacterial taxonomic profiles that differentiate one sample from another.MethodsWe develop tools and techniques that help us to investigate the nature of social interactions in microbial communities, and demonstrate ways of compactly capturing extensive information about these networks and visually conveying them in an effective manner. We define the concept of bacterial "social clubs", which are groups of taxa that tend to appear together in many samples. More importantly, we define the concept of "rival clubs", entire groups that tend to avoid occurring together in many samples. We show how to efficiently compute social clubs and rival clubs and demonstrate their utility with the help of examples including a smokers' dataset and a dataset from the Human Microbiome Project (HMP).ResultsThe tools developed provide a framework for analyzing relationships between bacterial taxa modeled as bacterial co-occurrence networks. The computational techniques also provide a framework for identifying clubs and rival clubs and for studying differences in the microbiomes (and their interactions) of two or more collections of samples.ConclusionsMicrobial relationships are similar to those found in social networks. In this work, we assume that strong (positive or negative) tendencies to co-occur or co-infect is likely to have biological, physiological, or ecological significance, possibly as a result of cooperation or competition. As a consequence of the analysis, a variety of biological interpretations are conjectured. In the human microbiome context, the pattern of strength of interactions between bacterial taxa is unique to body site.

Highlights

  • Complex, heterogeneous, interacting microbial communities reside in a variety of niches, including those within the human body and other host organisms [1]

  • One of the greatest challenges in understanding human health is uncovering the large number of complex interactions that occur within the microbial community, and between the community and the human host

  • Our experiments show that the Markov method does a reasonable job of clustering bacterial co-occurrence networks and finding agreement with the more qualitative network diagram approach

Read more

Summary

Introduction

Heterogeneous, interacting microbial communities reside in a variety of niches, including those within the human body and other host organisms [1]. The Human Microbiome Project (HMP) focuses on using metagenomics approaches to study microbial. Classifying the reads helps to generate the profiles (either taxonomic or functional) of these microbial samples. Analysis of these profiles can shed light on the microbial communities - their commonalities and their differences - in the samples being investigated. One of the greatest challenges in understanding human health is uncovering the large number of complex interactions that occur within the microbial community, and between the community and the human host. We show how to push metagenomic analyses beyond mundane questions related to the bacterial taxonomic profiles that differentiate one sample from another

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call