Abstract

We recently proposed a scout model of the microbial life cycle (S. S. Epstein, Nature 457:1083, 2009), the central element of which is the hypothesis that dormant microbial cells wake up into active (so-called scout) cells stochastically, independently of environmental cues. Here, we check the principal prediction of this hypothesis: under growth-permissive conditions, dormant cells initiate growth at random time intervals and exhibit no species-specific lag phase. We show that a range of microorganisms, including environmental species, Escherichia coli, and Mycobacterium smegmatis, indeed wake up in a seemingly stochastic manner and independently of environmental conditions, even in the longest incubations conducted (months to years long). As is implicit in the model, most of the cultures we obtained after long incubations were not inherently slow growers. Of the environmental isolates that required ≥7 months to form visible growth, only 5% needed an equally long incubation upon subculturing, with the majority exhibiting regrowth within 24 to 48 h. This apparent change was not a result of adaptive mutation; rather, most microbial species that appear to be slow growers were in fact fast growers with a delayed initiation of division. Genuine slow growth thus appears to be less significant than previously believed. Random, low-frequency exit from the nongrowing state may be a key element of a general microbial survival strategy, and the phylogenetic breadth of the organisms exhibiting such exit indicates that it represents a general phenomenon. The stochasticity of awakening can also provide a parsimonious explanation to several microbiological observations, including the apparent randomness of latent infections and the existence of viable-but-nonculturable cells (VBNC).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.