Abstract
This study investigated the nitrogen removal enhanced by combined iron scraps and plant biomass, and its microbial response in the wetland with different plant ages and temperatures. The results showed that older plants benefitted the efficiency and stability of nitrogen removal, which could reach 1.97 ± 0.25 g m−2 d−1 in summer and 0.42 ± 0.12 g m−2 d−1 in winter. Plant age and temperature were the main factors determining the microbial community structure. Compared with temperature, plant ages affected more significantly on relative abundance of microorganisms such as Chloroflexi, Nitrospirae, Bacteroidetes and Cyanobacteria, and functional genera for nitrification (e.g., Nitrospira) and iron reduction (e.g., Geothrix). The absolute abundance of total bacterial 16S rRNA ranged from 5.22 × 108 to 2.63 × 109 copies g−1 and presented extremely significant negative correlation to plant age, which would lead to a decline in microbial function on information storage and processing. The quantitative relationship further revealed that the ammonia removal was related to 16S rRNA and AOB amoA, while nitrate removal was controlled by 16S rRNA, narG, norB and AOA amoA jointly. These findings suggested that a mature wetland for nitrogen removal enhancement should focus on aging microbes caused by old plants and possible endogenous pollution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.