Abstract

Soil microbial biomass and functions are the most affected soil components by environmental changes. Therefore, determining the factors affecting soil microorganisms is very important for forest management. This study was conducted to determine the influence of forest type and seasonal variations on microbial biomass and activities in soil. For this, a total of 360 soil samples were collected (120 from each of the Black Pine, Lebanon Cedar, and Oriental Beech) during four seasons of the year in the Eastern Mediterranean Karst Mountain of Taurus, Turkey. Soil samples were used to determine soil organic carbon (SOC), total nitrogen (TN), microbial biomass carbon (Cmic), microbial biomass nitrogen (Nmic), and microbial respiration (MR). With these data, the metabolic quotient (MR/Cmic ratio) and microbial quotient (qCO2 = Cmic/SOC ratio) were calculated. Soil Cmic and Nmic were significantly higher in Cedar (789.5 ± 438 μg C g−1; 305.26 ± 93 μg N g−1) than in the Beech (691.8 ± 246 μg C g−1; 148.18 ± 43 μg N g−1) and Pine forests (659.4 ± 224 μg C g−1; 130.1 ± 22 μg N g−1). Microbial properties were highly sensitive to forest tree species and seasonal patterns, which can be further used as potential indicators of the effects that forest management practices may have on SOC dynamics. The three forest types showed significant differences in the seasonal Cmic and Nmic patterns, with maximum values occurring in the fall and minimum in the winter season. However, averaged across forest species, SOC did not vary among different seasons. The qCO2 was higher in Cedar forest in the winter season and lower in the Beech forest during the spring season. These findings show that Cedar forest could be more conducive to higher microbial activity and overall soil quality than the Beech and Pine forests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.