Abstract

ABSTRACTMicrobial transformation of sulfate minerals plays an important role in controlling the behavior of heavy metals in mining areas. Here, the anaerobic reduction of Cr (VI)-loaded schwertmannite by Shewanella oneidensis MR-1 (S. oneidensis MR-1) was investigated. The release of ferrous iron (Fe(II)) to the solution demonstrated the microbial reduction of structural Fe(III) from the schwertmannite to Fe(II). The concentration of Cr in solution decreased in all treatments, indicating that no Cr was released to the solution during this bio-reduction process of schwertmannite. The incorporation of chromate into the mineral structure of schwertmannite increased the microbial stability of the mineral, retarding the formation of secondary phases during bio-reduction process. Analysis of the XRD, SEM and fourier transform infrared spectroscopy (FT-IR) results further showed that goethite formed after 3 or 7 days with a lower content (0.22% or 0.37%) of Cr in schwertmannite, while no secondary mineral was observed with a higher concentration of Cr (0.6 wt%) incorporated in schwertmannite until 22 days. These results imply that microbial reduction of Cr(VI)-loaded schwertmannite does not lead to the release of Cr to the solution, and the microbial stability of schwertmannite will be increased by the incorporation of chromate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call