Abstract
Mineral resources have been counted as public assets with economic benefit since time immemorial. Due to the rising issue of decreasing mineral deposits, recovery of metals from several waste residues has become progressively more essential. Novel and efficient recycling processes have been on the rise globally. Manganese (Mn) as the fourth most industrially applicable metal generates an extensive quantity of metallic waste which not only leads to loss of precious metal but also results in environmental toxicity. Globally, around 7 million tons of high-grade ores are produced, whereas 8 million tons of Mn alloys are produced yearly. Therefore, it is of greater significance to recover and recycle Mn from various waste residues. Various physical and biological techniques have been developed for recycling Mn from waste residues. Traditional Mn extraction processes are costly and labor intensive in nature, on the contrary, bioleaching techniques using diverse microorganism’s, form the basis of an efficient, eco-friendly, and economically sustainable process of metal recovery. The quick progress in current methodologies to counteract the fast consumption of innate mineral resources involves the proper utilization of unused waste residues containing industrially important metals like Mn. This review focuses to enumerate diverse features of Mn recovery, efficient methodologies, bioleaching of Mn, merits of Mn bioleaching, and applications of recycled Mn along with the futuristic applications. Manganese recovery by means of bioleaching will play a major role in changing the present situation where innate assets are quickly diminishing and substitute for metal recovery methodologies are the demand of this time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.