Abstract
The rate, timing, and quality of resource supply exert strong controls on a wide range of ecological processes. In particular, resource-mediated changes in microbial activity have the potential to alter ecosystem processes, including the production and respiration of organic matter. In this study, we used field experiments and simulation modeling to explore how aquatic heterotrophic bacteria respond to variation in resource quality (low vs. high) and resource schedule (pulse vs. press). Field experiments revealed that one-time pulse additions of resources in the form of dissolved organic carbon (DOC) caused short-lived (< or =48 h) peaks in bacterial productivity (BP), which translated into large differences across treatments: cumulative BP was twice as high in the pulse vs. press treatment under low resource quality, and five times as high under high resource quality. To gain a more mechanistic understanding of microbial productivity in variable resource environments, we constructed a mathematical model to explore the attributes of bacterial physiology and DOC supply that might explain the patterns observed in our field experiments. Model results suggest that the mobilization rate of refractory to labile carbon, an index of resource quality, was critical in determining cumulative differences in BP between pulse and press resource environments (BPPu:Pr ratios). Moreover, BPPu:Pr ratios were substantially larger when our model allowed for realistic changes in bacterial growth efficiency as a function of bacterial carbon consumption. Together, our field and modeling results imply that resource schedule is important in determining the flow of material and energy from microbes to higher trophic levels in aquatic food webs, and that the effects of resource quality are conditional upon resource schedule. An improved understanding of the effects of resource variability on microorganisms is therefore critical for predicting potential changes in ecosystem functioning in response to environmental change, such as altered DOC fluxes from terrestrial to aquatic ecosystems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.