Abstract

Escherichia coli was metabolically engineered to produce poly(glycolate-co-lactate-co-3-hydroxybutyrate) using glucose and xylose as carbon sources. The combinatorial biosynthetic route was constructed by the overexpression of a series of enzymes including D-tagatose 3-epimerase, L-fuculokinase, L-fuculose-phosphate aldolase, aldehyde dehydrogenase, propionyl-CoA transferase, β-ketothiolase, acetoacetyl-CoA reductase, and polyhydroxyalkanoate synthase. Overexpression of polyhydroxyalkanoate granule associated protein significantly improved biopolymer synthesis, and the recombinant strain reached 3.73 g/L cell dry weight with 38.72% (W/W) biopolymer content. A co-culture engineering strategy was developed to produce biopolymer from a mixture of glucose and xylose, achieving 4.01 g/L cell dry weight containing 21.54% (W/W) biopolymer. The results of this work offer an approach for simultaneously utilizing glucose and xylose and indicate the potential for future biopolymer production from lignocellulosic biomass.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.