Abstract

Anthropogenic carbon emissions are driving rapid changes to the earth's climate, disrupting whole ecosystems and endangering the stability of human society. Innovations in engineered microbial fermentation enable the fossil resource-free production of fuels, commodity chemicals, and materials, thereby reducing the carbon emissions associated with these products. Microorganisms have been engineered to catabolize sustainable sources of carbon and energy (i.e., plant biomass, plastic waste, and one-carbon feedstocks) and biosynthesize carbon-neutral or carbon-negative products. These engineering efforts exploit and optimize natural biological pathways or generate unnatural pathways which can biosynthesize chemicals that have not yet been accessed using synthetic chemistry. Recent advances in microbial fermentation seek not only to maximize the titer, rate, and yield of desired products, but also to tailor microbial catabolism to utilize inexpensive feedstocks. Ultimately, these advances aim to lower the cost of bioproduction so that microorganism-derived chemicals can be economically competitive with fossil-derived chemicals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call