Abstract

Black carbon is degraded slowly in the environment and its formation can therefore be an effective sink for atmospheric CO 2. This study examined whether charcoal is assimilated by microorganisms or not and estimated the rate of mineralization depending on the degree of thermal alteration of the black carbon. Charcoals were produced at three different temperatures from homogeneously 14C labelled plant material and incubated in soil, and 14C in the evolved CO 2 and the microbial biomass was measured. Unlike parallel plant samples, CO 2 evolution from the charcoals showed no lag phase, but a period of faster CO 2 evolution for the first 5–8 days followed by a period of slow evolution. The mineralization of charcoal appeared to decrease with increasing temperature at which it was produced. This was also the case after the initial period of fast CO 2 evolution. With the techniques used, it was not possible to observe any microbial assimilation of charcoal, either because it did not occur, or because the methods used were not sufficiently sensitive. However, the lack of a lag phase in the CO 2 evolution from the charcoals is in line with earlier evidence that charcoal is initially oxidized at the surfaces by abiotic processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.