Abstract

Contaminated sediments influence drastically the long-term toxicological and ecological properties of aquatic ecosystems. During the past three decades, scientific knowledge about sediment-water exchange processes and the deposition and distribution of pollutants in water and sediment phases has been supplemented by extensive research on the effects of sediment-associated pollutants on aquatic organisms. Basic research in microbiology, ecology, and toxicology has uncovered the crucial role of sediment microorganisms for the biodegradation of organic matter and for the cycling of nutrients, as well as the susceptibility of these processes to toxic pollution events. Microorganisms have been extensively applied in aquatic toxicology, and various microbial toxicity tests are today available that successfully couple microbial toxicity endpoints to the specificity of the sediment matrix. Sediment-associated toxicants can be brought in contact with test bacteria using sediment pore waters, elutriates, extracts, or whole-sediment material. Toxicity indication principles for microorganisms are versatile and comprise growth and biomass determinations, respiration or oxygen uptake, bacterial luminescence, the activity of a variety of enzymes, and a compendium of genotoxicity assays. The border between toxicological and ecological contaminant effect evaluations in sediments is flexible, and long-term ecological predictions should also include an assessment of pollutant degradation capacities and of key reactions in element cycling. Evaluating microbial community structure and function in environmental systems makes use of modern molecular techniques and bioindicators that could trigger a new quality in the assessment of contaminated sediments in terms of indication of subtoxic effects and early-warning requirements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call