Abstract

A mixed bacterial culture was adapted to growth on a mixed carbon substrate consisting of the pesticide parathion and its xylene-based formulation. The environmental growth parameters of temperature, pH, and dissolved oxygen concentration were optimized to obtain complete metabolism of parathion from this mixed carbon substrate. This adapted culture grew rapidly (μ = 0.7 per h) on the pesticide formulation at high parathion suspensions (3,000 mg/liter). Carbon utilization from this mixed substrate was strongly dependent on pH. At slightly acidic pH, xylene was preferentially metabolized, whereas at slightly alkaline pH, parathion was preferentially metabolized. Diethylthiophosphoric acid, a metabolite from parathion, and toluic acid, a metabolite from xylene, also influenced the selection of the primary carbon source.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call