Abstract

Fungi were documented in tropical hypersaline microbial mats and their role in the degradation of complex carbohydrates (exopolymeric substance – EPS) was explored. Fungal diversity is higher during the wet season with Acremonium, Aspergillus, Cladosporium, and Penicillium among the more common genera. Diversity is also higher in the oxic layer and in young and transient mats. Enrichments with xanthan (a model EPS) show that without antibiotics (full community) degradation is faster than enrichments with antibacterial (fungal community) and antifungal (bacterial community) agents, suggesting that degradation is performed by a consortium of organisms (bacteria and fungi). The combined evidence from all experiments indicates that bacteria carried out approximately two-third of the xanthan degradation. The pattern of degradation is similar between seasons and layers but degradation is faster in enrichments from the wet season. The research suggests that fungi thrive in these hypersaline consortia and may participate in the carbon cycle through the degradation of complex carbohydrates.

Highlights

  • Cantrell et al (2011) reviewed unusual fungal niches of which most are considered extreme environments including Antarctic dry valleys, deep sea sediments, hydrothermal vents, microbial mats, and salterns

  • The results show that xanthan degradation is very fast in the top layer with 90, 78, and 64% degradation in the first week in full, bacterial, and fungal community, respectively (Figure 4)

  • Microbial mats are characterized by a high production of EPS by microbial communities

Read more

Summary

Introduction

Cantrell et al (2011) reviewed unusual fungal niches of which most are considered extreme environments including Antarctic dry valleys, deep sea sediments, hydrothermal vents, microbial mats, and salterns. Eukarya includes a metabolic diverse community of autotrophic, heterotrophic, and mixotrophic members of Cercomonads, Chlorophyte, Choanoflagellida, Ciliophora, Fungi, Radiolaria, Stramenopila, and Metazoa Because both oxic and anoxic conditions are present in many unusual and extreme environments, they can harbor eukaryotic organisms that are strict aerobes as well as those that are facultative anaerobes and strict anaerobes. Microbial mats are self-sustained vertically laminated, organosedimentary structures developing on solid surfaces (Figure 1) These can be found in a wide variety of ecosystems from marine intertidal and subtidal zones, fresh water rivers and even extreme environments such as hypersaline ponds, evaporation salterns, and hot springs (Awramik, 1984; Castenholtz, 1984; Anderson et al, 1987; Casillas-Martínez et al, 2005; Gerdes, 2007). Fluctuating diel and seasonal physicochemical gradients characterize these organo-sedimentary ecosystems resulting in both strata and microenvironments that harbor specific microbial communities (Dupraz and Visscher, 2005; Visscher and Stolz, 2005)

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.