Abstract

The use of solar energy and heterotrophic microbes to synthesize microbial lipids is a promising strategy to solve energy crisis and reduce CO2 emissions. In this study, a photocatalyst, oxygen-doped graphitic carbon nitride (O-g-C3N4), was synthesized and combined with an oleaginous yeast strain, Cutaneotrichosporon dermatis ZZ-46, to construct a photocatalyst-microbe hybrid (PMH) system. Under illumination, the lipid yield of the PMH system reached 1.61 g/L after 96 h (87 % higher than that of control). NADPH/NADP+ ratio of ZZ-46 cells in the PMH system increased. Metabolomics results revealed that glutathione generation was increased, and the fatty acid decomposition pathway in ZZ-46 cells was inhibited in the PMH system. This study provides a new approach for the synthesis of microbial lipids based on solar energy and heterotrophic microbes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call