Abstract

A conversion of the global terrestrial carbon sink to a source is critically dependent on the microbially mediated decomposition of soil organic matter (SOM). We have developed a detailed, process-based, mechanistic model for simulating SOM decomposition and its associated processes, based on Microbial Kinetics and Thermodynamics, called the MKT model. We formulated the sequential oxidation-reduction potential (ORP) and chemical reactions undergoing at the soil-water zone using dual Michaelis-Menten kinetics. Soil environmental variables, as required in the MKT model, are simulated using one of the most widely used watershed-scale models - the soil water assessment tool (SWAT). The MKT model was calibrated and validated using field-scale data of soil temperature, soil moisture, and N2O emissions from three locations in the province of Saskatchewan, Canada. The model evaluation statistics show good performance of the MKT model for daily soil N2O simulations. The results show that the proposed MKT model can perform better than the more widely used process-based and SWAT-based models for soil N2O simulations. This is because the multiple processes of microbial activities and environmental constraints, which govern the availability of substrates to enzymes were explicitly represented. Most importantly, the MKT model represents a step forward from conceptual carbon pools at varying rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.