Abstract

Systematic studies on the assembly process and driving mechanisms of microbial communities in estuaries with diverse seasonal and spatial scales are still limited. In this study, high-throughput sequencing, and microbial network analysis were combined to decipher the impact of environmental changes and biological interactions on the maintenance of microbial diversity patterns in the Jiulong River Estuary (JRE). The results showed that overall, stochastic processes dominated the bacterioplankton community assembly in the estuary, accounting for 49.66–74.78 % of the total. Additionally, bacterioplankton community diversity varied significantly across seasons and subzones. Specifically, the concentration of soluble reactive phosphorus (SRP) in the estuary steadily reduced from winter to summer, and the corresponding bacterioplankton community interactions gradually shifted from the weakest interaction in winter to the strongest in summer. The deterministic processes contributed more than half (50.34 %) to microbial assembly in the summer, but only 25.22 % in winter. Deterministic processes prevailed in the seaward with low SRP concentrations and strong bacterioplankton community interactions, while stochastic processes contributed 70.14 % to the assembly of microbial communities riverward. Biotic and abiotic factors, such as nutrients and microbial interactions, jointly drove the seasonal and spatial patterns of bacterioplankton community assembly, but overall, nutrients played a dominant role. Nevertheless, the contributions of nutrients and microbial interactions were equivalent in spatial assembly processes, albeit nutrients were the primary seasonal driver of the bacterioplankton community assembly process. This study emphasizes the significance of microbial interactions in the bacterioplankton community assemblage. These findings provide new and comprehensive insights into the microbial communities' organization in estuaries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call