Abstract

In this study, titanium dioxide nanoparticles doped with carbon (C-TiO2) were synthesized by means of sol–gel methods, and the synthesis was verified by means of X-ray photoelectron spectroscopy. The nanoparticles’ photocatalytic disinfection activity of Listeria monocytogenes was tested under UV and visible light. The observed inactivation levels for 150min of visible light exposure with and without UV cutoff filters were 2.10 and 2.45 log, respectively. We also found that traditional reactive oxygen species had insignificant actions on C-TiO2 photocatalysts and that L. monocytogenes inactivation in the C-TiO2 system under visible light was induced in large part by the midgap states (hmid+) that was produced photochemically from the visible light response. C-TiO2 was found to accelerate bacterial inactivation (of L. monocytogenes) in the presence of visible light. Our data suggests that the C-TiO2 may be useful in the development of alternative disinfectants for environmental applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call