Abstract

Degradation of the widespread herbicide atrazine has been intensively studied in soils, while its degradation in groundwater has received less attention. This work studied atrazine degradation in contaminated groundwater adjacent to its production plant. The degradation potential was first explored in groundwater enrichment cultures. A broad potential for microbial atrazine degradation was observed when atrazine served as the sole nitrogen source, even when incubated with nitrate. Hydroxyatrazine was formed by the cultures, while desethylatrazine and desisopropylatrazine were not detected. Both the atzA and the trzN genes were identified by quantitative PCR analysis, with a clear dominance of atzA. Carbon isotope enrichments throughout the degradation process varied between the different cultures, with ε values ranging from −0.6 to −5.5‰. This implies corresponding uncertainties when using compound-specific isotope analysis to estimate degradation extents. In the field samples, in-situ degradation was reflected by a high percentage of metabolites, with hydroxyatrazine accounting for >95% of the metabolites in most wells. Both atzA and trzN were detected in the groundwater at quantities of ≈102 to 106 copies mL−1, with a dominance of atzA over trzN. These results provide evidence of the high potential for atrazine hydrolysis in the contaminated groundwater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.