Abstract

Microorganisms are well known for degrading numerous natural compounds. The synthesis of a multitude of chlorinated compounds by the chemical industry and their release into the natural environment have created major pollution problems. Part of the cause of such pollution is the inability of natural microorganisms to efficiently degrade synthetic chlorinated compounds. Microorganisms are, however, highly adaptable to changes in the environment and have consequently evolved the genes that specify the degradation of chlorinated compounds to varying degrees. Highly selective laboratory techniques have also enabled the isolation of microbial strains capable of utilizing normally recalcitrant highly chlorinated compounds as their sole source of carbon and energy. The evolution and role of microbial genes and enzymes, as well as their mode of regulation and genetic interrelationships, have therefore been the subjects of intense study. This review emphasizes the genetic organization and the regulation of gene expression, as well as evolutionary considerations, regarding the microbial degradation of chlorobenzoates, chlorocatechols, and chlorophenoxyacetic acids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.