Abstract

The rapid consumption of fossil fuels has led to calls to switch from non-renewable to renewable energy sources. Microbial fuel cells are a promising technology that simultaneously treats wastewater and produces power. This study used the Taguchi Experimental method to optimize anode thickness and pH to obtain the maximum power density of an air-cathode microbial fuel cell (ACMFC). The graphene-sponge (G-S) anode thickness and chamber pH were selected as operating parameters, with their corresponding levels. The L9 orthogonal array was chosen for the experimental design. According to the Taguchi Method, the optimum G-S anode thickness and chamber pH were determined to be 1.0 cm and 8.0, respectively. A confirmatory run was performed under these optimum conditions, and the maximum power density observed was 707.75 mW·m−3. Analysis of variance (ANOVA) was conducted to identify the percentage contributions of the operating parameters to the process, which were found to be 30.66% for pH and 69.34% for anode thickness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.