Abstract

Most microbial fuel cell (MFC) sensors only focus on the detection of mixed solutions with respect to the chemical oxygen demand (COD) or toxicity; however, the concentrations of the individual analytes in a mixed solution have rarely been studied. Herein, we developed two types of MFC sensors, adapted with sodium acetate (MFC-A) and glucose (MFC-B) as organic substrates in the startup period. An evident difference in the sensor sensitivities (the slope value of the linear-regression curve) was observed between MFC-A and MFC-B. MFC-A exhibited a superior performance compared with MFC-B in the detection of sodium acetate (4868.9 vs. 2202 mV/(g/L), respectively) and glucose (3895.5 vs. 3192.9 mV/(g/L), respectively). To further compare these two MFC sensors, the electrochemical performances were evaluated, and MFC-A exhibited a higher output voltage and power density (593.76 mV and 129.81 ± 4.10 mW/m2, respectively) than MFC-B (484.08 mV and 116.21 ± 1.81 mW/m2, respectively). Confocal laser scanning microscopy (CLSM) and microbial-community analysis were also performed, and the results showed a richer anode biomass of MFC-A in comparison with MFC-B. By utilizing the different sensitivities of the two MFC sensors towards sodium acetate and glucose, we proposed and verified a novel method for a simultaneous test on the individual concentrations of sodium acetate and glucose in a mixed solution. Linear equations of the two variables (concentrations of sodium acetate and glucose) were formulated. The linear equations were solved according to the output voltages of the two MFC sensors, and the solutions showed a satisfactory accuracy with regard to sodium acetate and glucose (relative error less than 20%).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call