Abstract

Almost all organisms require iron for enzymes involved in essential cellular reactions. Aerobic microbes living at neutral or alkaline pH encounter poor iron availability due to the insolubility of ferric iron. Assimilatory ferric reductases are essential components of the iron assimilatory pathway that generate the more soluble ferrous iron, which is then incorporated into cellular proteins. Dissimilatory ferric reductases are essential terminal reductases of the iron respiratory pathway in iron-reducing bacteria. While our understanding of dissimilatory ferric reductases is still limited, it is clear that these enzymes are distinct from the assimilatory-type ferric reductases. Research over the last 10 years has revealed that most bacterial assimilatory ferric reductases are flavin reductases, which can serve several physiological roles. This article reviews the physiological function and structure of assimilatory and dissimilatory ferric reductases present in the Bacteria, Archaea and Yeast. Ferric reductases do not form a single family, but appear to be distinct enzymes suggesting that several independent strategies for iron reduction may have evolved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.