Abstract

Cadmium (Cd) accumulation in crops causes potential risks to human health. Microbial extracellular polymeric substances (EPS) are a complex mixture of biopolymers that can bind various heavy metals. The present work examined the alleviating effects of EPS on Cd toxicity in rice and its detoxification mechanism. The 100 μM Cd stress hampered the overall plant growth and development, damaged the ultrastructures of both leaf and root cells, and caused severe lipid peroxidation in rice plants. However, applying EPS at a concentration of 100 mg/L during Cd stress resulted in increased biomass, reduced Cd accumulation and transport, and minimized the oxidative damage. EPS application also enhanced Cd retention in the shoot cell walls and root vacuoles, and actively altered the expression of genes involved in cell wall formation, antioxidant defense systems, transcription factors, and hormone metabolism. These findings provide new insights into EPS-mediated mitigation of Cd stress in plants and help us to develop strategies to improve crop yield in Cd-contaminated soils in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call