Abstract
3-Nitro-1,2,4-triazol-5-one (NTO) is one of the main ingredients of many insensitive munitions, which are being used as replacements for conventional explosives. As its use becomes widespread, more research is needed to assess its environmental fate. Previous studies have shown that NTO is biologically reduced to 3-amino-1,2,4-triazol-5-one (ATO). However, the final degradation products of ATO are still unknown. We have studied the aerobic degradation of ATO by enrichment cultures derived from the soil. After multiple transfers, ATO degradation was monitored in closed bottles through measurements of inorganic carbon and nitrogen species. The results indicate that the members of the enrichment culture utilize ATO as the sole source of carbon and nitrogen. As ATO was mineralized to CO2, N2, and NH4+, microbial growth was observed in the culture. Co-substrates addition did not increase the ATO degradation rate. Quantitative polymerase chain reaction analysis revealed that the organisms that enriched using ATO as carbon and nitrogen source were Terrimonas spp., Ramlibacter-related spp., Mesorhizobium spp., Hydrogenophaga spp., Ralstonia spp., Pseudomonas spp., Ectothiorhodospiraceae, and Sphingopyxis. This is the first study to report the complete mineralization of ATO by soil microorganisms, expanding our understanding of natural attenuation and bioremediation of the explosive NTO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.