Abstract
Microbial electrosynthesis (MES) and anaerobic fermentation (AF) are two biological processes capable of reducing CO2, CO, and water into acetic acid, an essential industrial reagent. In this study, we evaluated investment and production costs of acetic acid via MES and AF, and compared them to industrial chemical processes: methanol carbonylation and ethane direct oxidation. Production and investment costs were found high-priced for MES (1.44 £/kg, 1770 £/t) and AF (4.14 £/kg, 1598 £/t) because of variable and fixed costs and low production yields (100 t/y) compared to methanol carbonylation (0.26 £/kg, 261 £/t) and ethane direct oxidation (0.11 £/kg, 258 £/t). However, integrating AF with MES would reduce the release of CO2, double production rates (200 t/y), and decrease investment costs by 9% (1366 £/t). This resulted into setting the production costs at 0.24 £/kg which is currently market competitive (0.48 £/kg). This economically feasible bioprocess produced molar flow rates of 4550 mol per day from MES and AF independently. Our findings offer a bright opportunity toward the use and scale-up of MES and AF for an economically viable acetic acid production process.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.