Abstract

The effects of microbial electrolysis cells (MECs) at three applied voltages (0.8, 1.3, and 1.6 V) on simultaneously enhancing methanization and reducing hydrogen sulfide (H2S) production in the anaerobic digestion (AD) of sewage sludge were studied. The results showed that the MECs at 1.3 V and 1.6 V simultaneously enhanced the methane production by 57.02 and 12.70% and organic matter removal by 38.77 and 11.13%, and reduced H2S production by 94.8 and 98.2%, respectively. MECs at 1.3 V and 1.6 V created a micro-aerobic conditions for the digesters with oxidation-reduction potential as −178∼-232 mv, which enhanced methanization and reduced H2S production. Sulfur reduction, H2S and elemental sulfur oxidation occurred simultaneously in the ADs at 1.3 V and 1.6 V. The relative abundances of sulfur-oxidizing bacteria increased from 0.11% to 0.42% and those of sulfur-reducing bacteria decreased from 1.24% to 0.33% when the applied voltage of MEC increased from 0 V to 1.6 V. Hydrogen produced by electrolysis enhanced the abundance of Methanobacterium and changed the methanogenesis pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call