Abstract

Microbial electrochemical technologies have been extensively employed for phenol removal. Yet, previous research has yielded inconsistent results, leaving uncertainties regarding the feasibility of phenol degradation under strictly anaerobic conditions using anodes as sole terminal electron acceptors. In this study, we employed high-performance liquid chromatography and gas chromatography-mass spectrometry to investigate the anaerobic phenol degradation pathway. Our findings provide robust evidence for the purely anaerobic degradation of phenol, as we identified benzoic acid, 4-hydroxybenzoic acid, glutaric acid, and other metabolites of this pathway. Notably, no typical intermediates of the aerobic phenol degradation pathway were detected. One-chamber reactors (+0.4 V vs. SHE) exhibited a phenol removal rate of 3.5 ± 0.2 mg L−1 d−1, while two-chamber reactors showed 3.6 ± 0.1 and 2.6 ± 0.9 mg L−1 d−1 at anode potentials of +0.4 and + 0.2 V, respectively. Our results also suggest that the reactor configuration certainly influenced the microbial community, presumably leading to different ratios of phenol consumers and microorganisms feeding on degradation products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.