Abstract

Simple SummaryHoney bees are vital to the agriculture of the world, but like all managed organisms, disease control has become challenging due to the overuse and misuse of antibiotics. Alternate solutions with potential to control disease include natural compounds and probiotic supplements. Probiotic supplements in honey bees have been praised by industry, but studies applying probiotics to honey bee larval disease are lacking and technically challenging. In this study we tested the effectiveness of a demonstrated probiotic (Parasacharribacter apium strain C6) to mitigate a damaging larval disease called European Foul Brood (EFB). Based on a controlled laboratory study and two separate trials, the probiotic had no effect on EFB disease. The control groups performed as expected, validating the very sensitive lab procedure used to artificially rear honey bee larvae. Surprisingly, the probiotic provided no survival benefit to larvae in the absence of disease, contradicting past results. We discuss the difficult technique of larval rearing in the laboratory with reference to an improved experimental design introducing disease agents and potential remedies. In summary, our findings indicate that the representation of honey bee health and disease in the laboratory setting requires repeatable validation with reference to rigorous control and natural colony context.European honey bees (Apis mellifera Linnaeus) are beneficial insects that provide essential pollination services for agriculture and ecosystems worldwide. Modern commercial beekeeping is plagued by a variety of pathogenic and environmental stressors often confounding attempts to understand colony loss. European foulbrood (EFB) is considered a larval-specific disease whose causative agent, Melissococcus plutonius, has received limited attention due to methodological challenges in the field and laboratory. Here, we improve the experimental and informational context of larval disease with the end goal of developing an EFB management strategy. We sequenced the bacterial microbiota associated with larval disease transmission, isolated a variety of M. plutonius strains, determined their virulence against larvae in vitro, and explored the potential for probiotic treatment of EFB disease. The larval microbiota was a low diversity environment similar to honey, while worker mouthparts and stored pollen contained significantly greater bacterial diversity. Virulence of M. plutonius against larvae varied markedly by strain and inoculant concentration. Our chosen probiotic, Parasaccharibacter apium strain C6, did not improve larval survival when introduced alone, or in combination with a virulent EFB strain. We discuss the importance of positive and negative controls for in vitro studies of the larval microbiome and disease.

Highlights

  • Honey bees are valuable pollinators of agriculture and ecosystems worldwide [1,2]

  • To characterize the microbiome associated with larval disease transmission, we examined sources of inoculum associated with the task of feeding larvae

  • We extracted DNA from the following substrates from five hives housed at the Carl Hayden Bee Research Center (CHBRC) in Tucson, AZ, USA: Stored pollen, honey, 2nd instar larvae (50 larvae pooled within hive), and nurse bee mouthparts using established techniques [9,20]

Read more

Summary

Introduction

Honey bees are valuable pollinators of agriculture and ecosystems worldwide [1,2]. Recent and sustained colony loss has necessitated a review of pollination ecology and its relation to agriculture [3].Recent colony loss has been described as multifactorial, involving combinations of environmental stress and disease agents [4,5]. Honey bees are valuable pollinators of agriculture and ecosystems worldwide [1,2]. Recent and sustained colony loss has necessitated a review of pollination ecology and its relation to agriculture [3]. Recent colony loss has been described as multifactorial, involving combinations of environmental stress and disease agents [4,5]. Often associated with colony decline, bacterial diseases of honey bee larvae have become more prevalent worldwide [6]. To confront this growing threat, the patterns and processes that cause or encourage honey bee larval disease are being explored in greater detail [7,8]. The interplay between disease states and the native microbiome is a growing field of study [9,10,11,12,13,14,15]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.