Abstract

The soil chemical properties and microbial numbers in three volcanic ash soils and two non-volcanic ash soils, which had been continuously subjected to the same tea cultivation practices (21 y), were investigated. The results obtained were as follows. 1) pH values of all the soils gradually decreased from the original pH value (near neutral or mildly acid pH) to strongly acid values of about 4 or lower. In contrast, long-term tea cultivation practices resulted in the increase of the total C and N contents in the surface layers (0–20 cm) while the contents remained stable in the subsurface layers (20–40 cm). The increase in the organic matter content in non-volcanic ash soils was presumably due to the accumulation of microbial residues. The availability of P increased markedly. 2) Numbers of bacteria, actinomycetes, fungi, and denitrifiers were higher in volcanic ash soils than in non-volcanic ash soils, and also higher in surface layers than in subsurface layers. The results suggest that in spite of the same cultivation practices, the soil depth and soil type affected the microbial numbers in the tea soils. Numbers of autotrophic NH4 + oxidizers were low in comparison with the numbers of autotrophic NO2 - oxidizers. Influence of soil type and soil depth on autotrophic nitrifiers was not clear. 3) Total C and N contents in the tea soils were parameters closely related to the numbers of bacteria, actinomycetes, and fungi. For actinomycetes and fungi, the prediction could be more accurate, especially for total N content, if the estimations could be made within the same soil layers. The numbers per unit of C or N were higher in the surface layers than in the subsurface layers. 4) High concentration of NO3 --N in the tea soils used suggests that nitrification could occur despite the low pH value (3.2-3.8). The negative relationship between the number of total bacteria or actinomycetes and soil NH4 +-N concentration suggests that some NH4 +-N was converted to organic microbial biomass-No.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.