Abstract

The environmental influence of farm management in concentrated animal feeding operations (CAFO) can yield vast changes to the microbial biota and ecological structure of both the pig and waste manure lagoon wastewater. While some of these changes may not be negative, it is possible that CAFOs can enrich antibiotic resistant bacteria or pathogens based on farm type, thereby influencing the impact imparted by the land application of its respective wastewater. The purpose of this study was to measure the microbial constituents of swine-sow, -nursery, and -finisher farm manure lagoon wastewater and determine the changes induced by farm management. A total of 37 farms were visited in the Mid-South USA and analyzed for the genes 16S rRNA, spaQ (Salmonella spp.), Camp-16S (Campylobacter spp.), tetA, tetB, ermF, ermA, mecA, and intI using quantitative PCR. Additionally, 16S rRNA sequence libraries were created. Overall, it appeared that finisher farms were significantly different from nursery and sow farms in nearly all genes measured and in 16S rRNA clone libraries. Nearly all antibiotic resistance genes were detected in all farms. Interestingly, the mecA resistance gene (e.g. methicillin resistant Staphylococcus aureus) was below detection limits on most farms, and decreased as the pigs aged. Finisher farms generally had fewer antibiotic resistance genes, which corroborated previous phenotypic data; additionally, finisher farms produced a less diverse 16S rRNA sequence library. Comparisons of Camp-16S and spaQ GU (genomic unit) values to previous culture data demonstrated ratios from 10 to 10,000:1 depending on farm type, indicating viable but not cultivatable bacteria were dominant. The current study indicated that swine farm management schemes positively and negatively affect microbial and antibiotic resistant populations in CAFO wastewater which has future “downstream” implications from both an environmental and public health perspective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.