Abstract

Environmental factors (e.g., climate and edaphic factors) indirectly regulate residue decomposition via microbial communities. Microbial ecological clusters (eco-clusters) structured by specific environmental factors have consequences for ecosystem functions. However, less is known about how microbial eco-clusters affect residue decomposition, especially over broad geographic scales. We collected agricultural soils from adjacent pairs of upland and paddy fields along a latitudinal gradient from the cold-temperature zone to the tropical zone, and conducted a microcosm experiment with 13C-labelled maize residue to explore the continental pattern of maize residue-derived 13CO2 (RDC), and whether and how microbial eco-clusters drive and predict RDC. Results showed that RDC decreased with latitude in both upland and paddy fields. Further, we identified 21 well-defined eco-clusters according to microbial environmental preferences, which explained 51.15 % of the spatial variations in RDC. The eco-clusters of high-total annual precipitation (TAP), high-mean annual temperature (MAT), low-pH, and some low-nutrient-associated exerted a positive effect on RDC. These eco-clusters contained many taxa belonging to the Actinobacteriota, Firmicutes, and Sordariomycetes, and their relative abundance decreased with latitude. Upland soils displayed 2.40-fold of RDC over paddy soils. Low-pH and high-organic matter (OM) eco-clusters were found to be the most prominent predictors of RDC in upland and paddy fields, respectively. Finally, we constructed a continental atlas of RDC in both upland and paddy fields based on eco-clusters and high-resolution climate and soil data. Overall, our study provides important evidence that historical environment-shaped microbial eco-clusters can drive and predict residue decomposition, providing new insights into how environmental factors indirectly regulate residue decomposition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.