Abstract

In situ chemical oxidation (ISCO) followed by a bioremediation step is increasingly being considered as an effective biphasic technology. Information on the impact of chemical oxidants on organohalide respiring bacteria (OHRB), however, is largely lacking. Therefore, we used quantitative PCR (qPCR) to monitor the abundance of OHRB (Dehalococcoides mccartyi, Dehalobacter, Geobacter, and Desulfitobacterium) and reductive dehalogenase genes (rdh; tceA, vcrA, and bvcA) at a field location contaminated with chlorinated solvents prior to and following treatment with sodium persulfate. Natural attenuation of the contaminants tetrachloroethene (PCE) and trichloroethene (TCE) observed prior to ISCO was confirmed by the distribution of OHRB and rdh genes. In wells impacted by persulfate treatment, a 1 to 3 order of magnitude reduction in the abundances of OHRB and complete absence of rdh genes was observed 21 days after ISCO. Groundwater acidification (pH<3) and increase in the oxidation reduction potential (>500 mV) due to persulfate treatment were significant and contributed to disruption of the microbial community. In wells only mildly impacted by persulfate, a slight stimulation of the microbial community was observed, with more than 1 order of magnitude increase in the abundance of Geobacter and Desulfitobacterium 36 days after ISCO. After six months, regeneration of the OHRB community occurred, however, neither D. mccartyi nor any rdh genes were observed, indicating extended disruption of biological natural attenuation (NA) capacity following persulfate treatment. For full restoration of biological NA activity, additional time may prove sufficient; otherwise addition electron donor amendment or bioaugmentation may be required.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.