Abstract

The formation and release of acid mine drainage (AMD) have caused extremely serious pollution in the environment around many mining areas. The biological oxidation of metal sulfide minerals causes the production and release of AMD. To understand the interaction mechanism between microbial and AMD, the study uses Southwest Dashu pyrite as an example to investigate the geochemical gradient characteristics and microbial diversity response on AMD from abandoned mine. Through collecting and testing the water samples, the geochemical parameters such as physical and chemical indexes, main ion composition and microbial community composition of seven mine drainage points were obtained. The results showed that the geochemical and microbial community structure the decrease of AMD pollution in the study area with the decrease of altitude has obvious gradient characteristics. Although AMD has the distribution of acid-resistant iron and sulfur bacteria oxidizing bacteria, the microbial community diversity has obvious gradient characteristics. The categories with a relative abundance of > 5% include Proteobacteria, Actinobacteriota, Firmicutes, WPS-2, Chloroflexi, Bacteroidota, and Acidobacteriota. Actinobacteriota, which was common in the AMD, was distributed throughout the samples. The correlation analysis between water quality parameters and microbial community showed that the microbial community structure was affected by environmental factors. With the increase of acidity and metal ion content, the diversity of microbial community decreased, and the content of acid-resistant iron and sulfur oxidizing bacteria increased. The results showed that pH, dissolved oxygen (Do), the total iron (Fe) content (TFe), SO42-, and Al3+ were the five parameters that most affected microbiological diversity and interaction. Hydrogeochemistry and major ions analysis revealed that AMD in the study area mainly comes from the biological oxidation of metal sulfides and the dissolution and cation exchange of other minerals around the deposit. The degree of AMD pollution is related to the hydrogeochemical conditions in the mine. The higher the mine's water level, the lower the pollutants, and the less AMD is produced and released. The findings confirmed that geochemical gradients significantly changed the biota of the mine water and enriched the related microbial diversity adapted to different environmental factors. Therefore, the findings provide strong support for mine containment to inhibit oxidation and lay the foundation for prevention and control strategies of AMD pollution sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.