Abstract

Cyanobacterial harmful algal blooms pose a significant threat to aquatic ecosystems and human health. Although physical and chemical conditions in aquatic systems that facilitate bloom development are well studied, there are fundamental gaps in the biological understanding of the microbial ecosystem that makes a cyanobacterial bloom. High-throughput sequencing was used to determine the drivers of cyanobacteria blooms in nature. Multiple functions and interactions important to consider in cyanobacterial bloom ecology were identified. The microbial biodiversity of blooms revealed microbial functions, genomic characteristics, and interactions between cyanobacterial populations that could be involved in bloom stability and more coherently define cyanobacteria blooms. Our results highlight the importance of considering cyanobacterial blooms as a microbial ecosystem to predict, prevent, and mitigate them.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call