Abstract

The Najafgarh drain plays a significant role in the pollution of the Yamuna River, accounting for 40% of the total pollution. Therefore, it is crucial to investigate and analyze the microbial diversity, metabolic functional capacity, and antibiotic resistance genes (ARGs) present in the Najafgarh drain. Additionally, studying the water quality and its relationship with the proliferation of microorganisms in the drain is of utmost importance. Results obtained confirmed the deteriorated water quality as physico-chemical parameters such as biochemical oxygen demand (BOD), chemical oxygen demand (COD), dissolved oxygen (DO), and total suspended solids (TSS) in the range of 125–140, 400–460, 0–0.2, 25–140.4 mg/l respectively violated the standard permissible national and global standards. In addition, the next generation sequencing (NGS) analysis confirm the presence of genus such as Thauera, Arcobacter, Pseudomonas, Geobacter, Dechloromonas, Tolumonas, Sulfurospirullum, Desulfovibrio, Aeromonas, Bacteroides, Prevotella, Cloacibacterium, Bifidobacterium, Clostridium etc. along with 864 ARGs in the wastewater obtained from the Najafgarh drain. Findings confirm that the pathogenic species reported from this dataset possess severe detrimental impact on faunal and human health. Further, Pearson's r correlation analysis indicated that environmental variables, mainly total dissolved solids (TDS) and chemical oxygen demand (COD), play a pivotal role in driving microbial community structure of this heavily polluted drain. Thus, the poor water quality, presence of a microbial nexus, pathogenic markers, and ARGs throughout this drain confirmed that it would be one potential contributor to the dissemination of disease-causing agents (pathogens) to the household and drinking water supplies in the near future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call