Abstract

Natural mineral formations are a window into important processes leading to carbon storage and mineralized carbonate structures formed through abiotic and biotic processes. In the current study, we made an attempt to undertake a comprehensive approach to characterize the mineralogical, mechanical, and microbial properties of different kinds of speleothems from karstic caves; with an aim to understand the bio-geo-chemical processes in speleothem structures and their impact on nanomechanical properties. We also investigated the biomineralization abilities of speleothem surface associated microbial communities in vitro. Mineralogical profiling using techniques such as X-ray powder Diffraction (XRD) and Tescan Integrated Mineral Analyzer (TIMA) demonstrated that calcite was the dominant mineral in the majority of speleothems with Energy Dispersive X-ray Analysis (EDS) indicating a few variations in the elemental components. Differing proportions of polymorphs of calcium carbonate such as aragonite and vaterite were also recorded. Significant variations in trace metal content were recorded through Inductively Coupled Plasma Mass Spectrometer (ICP-MS). Scanning Electron Microscopy (SEM) analysis revealed differences in morphological features of the crystals which varied from triangular prismatic shapes to etched spiky forms. Microbial imprints and associations were seen in a few sections. Analysis of the associated microbial diversity showed significant differences between various speleothems at Phylum level; although Proteobacteria and Actinobacteria were found to be the predominant groups. Genus level microbial associations showed a relationship with the geochemistry, mineralogical composition, and metal content of the speleothems. The assessment of nanomechanical properties measured by Nanoindentation revealed that the speleothems with a dominance of calcite were stronger than the speleothems with mixed calcium carbonate polymorphs and silica content. The in vitro metabolic activity of the microbial communities associated with the surfaces of the speleothems resulted in calcium carbonate crystal precipitation. Firmicutes and Proteobacteria dominated these populations, in contrast to the populations seen in natural systems. The precipitation of calcium carbonate crystals in vitro indicated that microbial metabolic activity may also play an important role in the synthesis and dissociation of biominerals in the natural environment. Our study provides novel evidence of the close relationship between mineralogy, microbial ecology, geochemistry, and nanomechanical properties of natural formations.

Highlights

  • Biomineralization is a naturally occurring process where microbial metabolic activity influences the formation of geological structures (Lowenstam, 1981; Hammes and Verstraete, 2002; Hamilton, 2003)

  • This was seen for the calcium proportion as carbonate with Lake Cave and Moondyne Cave speleothems having a higher content compared to Mammoth Cave speleothems

  • Microbial diversity study of bacterial communities associated with the different cave speleothems specified that variations in assemblages were related to the mineralogy and geochemistry

Read more

Summary

Introduction

Biomineralization is a naturally occurring process where microbial metabolic activity influences the formation of geological structures (Lowenstam, 1981; Hammes and Verstraete, 2002; Hamilton, 2003). A variety of microbial metabolic pathways including photosynthesis, ammonification, denitrification, ureolysis, and methane oxidation have been shown to influence redox conditions and lead to the precipitation of carbonates in different natural environments (Fortin et al, 1997; Douglas and Beveridge, 1998; Zhu and Dittrich, 2016). Several breakthroughs have been made at laboratory and field scale in the creation and utilization of biomineralized carbonates (De Muynck et al, 2010; Phillips et al, 2013; Dhami et al, 2017a; Porter et al, 2017) The application of this technology offers the advantage of high sustainability due to its synthesis at ambient temperatures and has spurred research into exploration of the properties of naturally mineralized structures (Cacchio et al, 2003; Phillips et al, 2013). A deeper and fundamental understanding of bio-geochemical properties of naturally mineralized structures along with the mechanical properties of these materials is imperative (Northup and Lavoie Diana, 2001; Dhami et al, 2012, 2013b; Zepeda Mendoza et al, 2016)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call