Abstract

Lake Atitlan, Guatemala, a freshwater lake in South America, experiences annually recurring blooms comprised of the planktic filamentous cyanobacterium Lyngbya robusta. Previous physiochemical characterisation of the bloom identified diurnal nitrogenase activity typical of non-heterocystous cyanobacteria, in addition to the low-level detection of the cyanotoxins cylindrospermopsin and saxitoxin. A molecular approach, combining deep sequencing of the 16S rRNA and nifH genes, was applied to a cyanobacteria-dominated sample collected during the extensive 2009 bloom. Lyngbya accounted for over 60 % of the total 16S rRNA sequences with the only other cyanobacterial species detected being the picophytoplankton Synechococcus. The remaining bacterial population was comprised of organisms typical of other eutrophic freshwater bodies, although the proportionate abundances were atypical. An obligate anaerobe Opitutus, not typically found in freshwater systems, was identified within the community which suggests it may have a role in enhancing nitrogen fixation. Primary nitrogen fixation was attributed to Lyngbya, with other putative nitrogen fixers, Desulfovibrio, Clostridium and Methylomonas, present at very low abundance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call