Abstract

Chemical mobility of crystalline and amorphous SiO2 plays a fundamental role in several geochemical and biological processes, with silicate minerals being the most abundant components of the Earth’s crust. Although the oldest evidences of life on Earth are fossilized in microcrystalline silica deposits, little is known about the functional role that bacteria can exert on silica mobility at non-thermal and neutral pH conditions. Here, a microbial influence on silica mobilization event occurring in the Earth’s largest orthoquartzite cave is described. Transition from the pristine orthoquartzite to amorphous silica opaline precipitates in the form of stromatolite-like structures is documented through mineralogical, microscopic and geochemical analyses showing an increase of metals and other bioessential elements accompanied by permineralized bacterial cells and ultrastructures. Illumina sequencing of the 16S rRNA gene describes the bacterial diversity characterizing the consecutive amorphization steps to provide clues on the biogeochemical factors playing a role in the silica solubilization and precipitation processes. These results show that both quartz weathering and silica mobility are affected by chemotrophic bacterial communities, providing insights for the understanding of the silica cycle in the subsurface.

Highlights

  • In the last two decades, understanding the functional role of microorganisms in quartz and silicate weathering and in the formation of biomediated amorphous silica deposits has emerged at the forefront of scientific investigation for gathering insights on the global silica cycle[1]

  • A similar trend is shown by cave water chemistry: in active stream waters (STR) silica content is low (0.1–1 mg L−1) and pH is acidic (3.5 to 4.5), while standing pool waters (WB) are saturated with respect to silica (>8 mg L−1), pH reaches 6 and minor components like sulfates, chlorine and barium are much higher than the stream waters (STR)[12] (Fig. 1g)

  • The formation of giant caves, extensive weathering features, and significant amorphous silica deposits in orthoquartzite environments appear as an unresolved paradox because of the extremely slow solution kinetics of quartz in low temperature and neutral-acidic pH conditions[4,13]

Read more

Summary

Introduction

In the last two decades, understanding the functional role of microorganisms in quartz and silicate weathering and in the formation of biomediated amorphous silica deposits has emerged at the forefront of scientific investigation for gathering insights on the global silica cycle[1]. Subsurface caves in quartz-rich lithologies (orthoquartzites, metaquartzites, and granites) are characterized by enduring (i.e. thousands or millions of years), highly stable temperature and geochemical settings[9,10]; in this respect, detailed studies of these environments allow to understand the mechanisms through which microorganisms play a role in quartz dissolution and silica re-precipitation in colloidal forms. Other processes, different from those occurring in hot springs, are required to explain the mobilization and re-precipitation of important amounts of SiO2 responsible for the formation of silica speleothems observed in Imawarì Yeuta cave[7]. All these deposits are composed of almost pure amorphous silica, currently developing on the weathered orthoquartzite walls and floors of the cave[17]. The identification of complex microbial community structures together with morphological and geochemical biosignatures in the tepui caves reveals important clues on their involvement in quartz weathering and on the functional microbial mechanisms and biomineralization processes occurring in these extreme oligotrophic environments under constant physical-chemical conditions

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call