Abstract

Biodegradation of two highly persistent fluorinated fungicides, epoxiconazole (EPO) and fludioxonil (FLU), by microbial consortia enriched from estuarine sediment and agricultural soil is reported. After an enrichment period of 6 months, four microbial consortia were able to completely remove and defluorinate the fungicides in co-metabolic conditions. Defluorination was biologically mediated and results suggest it is not a primary catabolic step, as fungicide removal was always faster than its defluorination. Three of the four enriched consortia had similar biodegradation performances in the absence of a co-substrate. Biodegradation kinetics revealed that microbial degradation followed a first-order kinetics, with cultures being capable of biodegrading concentrations up to 10 mg L−1 of EPO or FLU, in a maximum of 21 days. Estimated half-life values for these compounds were significantly lower than those reported in literature, highlighting the unique metabolic performance of the obtained consortia. Analysis of their microbial composition revealed that they integrate several bacterial species belonging to the Proteobacteria phylum, with the most common genera being Pseudomonas, Ochrobactrum and Comamonas. This is the first study providing clear evidence on the biodegradation of EPO and FLU, opening doors for the design of bioremediation technologies for the recovery of ecosystems polluted with such recalcitrant compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call